Eve-SQLAIchemy Documentation
Release 0.7.2.dev0

Dominik Kellner

Mar 29, 2020

Contents

1 Documentation

1.1 Installation
1.2 Tutorial
1.3 Simpleexample
1.4 Upgrading
1.5 HowtoContribute

2 Changelog

2.1 072 (unreleased)
22 0.7.1(2019-08-10) e
23 0.7.02018-10-08)
24 0.6.0(2018-08-15)
25 0.5.0(Q2017-10-22)
26 04.1Q015-12-16)

2.7 0.4.0a3 (2015-10-20)
2.8 0.4.0a2 (2015-09-17)
2.9 0.4.0al (2015-06-18)

2.10 0.34(2015-05-18)o oo
2.11 0.3.3(2015-05-13) oo
2,12 03.2(2015-05-01)
2,13 03.1(2015-04-29)o
2,14 03(2015-04-17)o
2.15 0.2.1(2015-02-25) oo
2.16 0.2(2015-01-27) oo
217 0.1(2015-01-13) oo

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

Use Eve with SQLAIchemy instead of MongoDB. Re-use your existing SQL data model and expose it via a RESTful
Web Service with no hassle.

Contents 1

https://python-eve.org
https://www.sqlalchemy.org

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

2 Contents

CHAPTER 1

Documentation

1.1 Installation

This part of the documentation covers the installation of Eve-SQLAlchemy. The first step to using any software
package is getting it properly installed.

Installing Eve-SQLAIlchemy is simple with pip:

$ pip install eve-sglalchemy

1.1.1 Development Version

Eve-SQLAIlchemy is actively developed on GitHub, where the code is always available. If you want to work with the
development version of Eve-SQLAlchemy, there are two ways: you can either let pip pull in the development version,
or you can tell it to operate on a git checkout. Either way, virtualenv is recommended.

Get the git checkout in a new virtualenv and run in development mode.

$ git clone https://github.com/pyeve/eve-sqlalchemy.git

Cloning into 'eve-sglalchemy'..

$ cd eve-sglalchemy
S virtualenv venv

Installing setuptools, pip, wheel...

done.

S . venv/bin/activate
S pip install .

Successfully installed ..

https://pip.pypa.io/en/stable/
https://github.com/pyeve/eve-sqlalchemy

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

This will pull in the dependencies and activate the git head as the current version inside the virtualenv. Then all you
havetodoisrun git pull origin to update to the latest version.

To just get the development version without git, do this instead:

S mkdir eve-sglalchemy

S cd eve-sglalchemy

S virtualenv venv

$. venv/bin/activate

S pip install git+https://github.com/pyeve/eve-sglalchemy.git

Successfully installed

And you’re done!

1.2 Tutorial

The example app used by this tutorial is available at examples/simple inside the Eve-SQLAlchemy repository.

1.2.1 Schema registration

The main goal of the SQLAlchemy integration in Eve is to separate dependencies and keep model registration depend
only on sqlalchemy library. This means that you can simply use something like that:

from sglalchemy import Column, DateTime, ForeignKey, Integer, String, func
from sglalchemy.ext.declarative import declarative_base
from sglalchemy.orm import column_property, relationship

Base = declarative_base()

class CommonColumns (Base) :
__abstract__ = True
_created = Column(DateTime, default=func.now())
_updated = Column(DateTime, default=func.now(), onupdate=func.now())
_etag = Column(String(40))

class People (CommonColumns) :
__tablename___ = 'people'
id = Column(Integer, primary_key=True, autoincrement=True)
firstname = Column (String(80))
lastname = Column (String(120))
fullname = column_property(firstname + " " + lastname)

class Invoices (CommonColumns) :
_ _tablename_ = 'invoices'
id = Column(Integer, primary_key=True, autoincrement=True)
number = Column (Integer)
people_id = Column(Integer, ForeignKey('people.id'))
people = relationship(People, uselist=False)

We have used CommonColumns abstract class to provide attributes used by Eve, such as _created and

4 Chapter 1. Documentation

https://www.sqlalchemy.org/

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

_updated. These are not needed if you are only reading from the database. However, if your API is also writ-
ing to the database, then you need to include them.

1.2.2 Eve settings

All standard Eve settings will work with SQLAlchemy support. However, you need to manually decide
which SQLAIchemy declarative classes you wish to register. You can do so using DomainConfig and
ResourceConfig, which will give you a default schema (DOMAIN dictionary) derived from your SQLAlchemy
models. This is intended as a starting point and to save you from redundant configuration, but there’s nothing wrong
with customizing this dictionary if you need to!

from eve_sqglalchemy.config import DomainConfig, ResourceConfig
from eve_sglalchemy.examples.simple.tables import Invoices, People

DEBUG = True

SQLALCHEMY_DATABASE_URI = 'sqglite://'
SQLALCHEMY_TRACK_MODIFICATIONS = False
RESOURCE_METHODS = ['GET', 'POST']

The following two lines will output the SQL statements executed by

SQLAlchemy. This is useful while debugging and in development, but is turned
off by default.

SQLALCHEMY ECHO = True

SQLALCHEMY_ RECORD_QUERIES = True

=

The default schema is generated using DomainConfig:
DOMAIN = DomainConfig({

'people': ResourceConfig(People),

'invoices': ResourceConfig(Invoices)
}) .render ()

But you can always customize it:
DOMAIN['people'] .update ({

'item_title': 'person',
'cache_control': 'max-age=10,must-revalidate',
'cache_expires': 10,

'resource_methods': ['GET', 'POST', 'DELETE']
hH

Even adding custom validations just for the REST-layer 1s possible:
DOMAIN['invoices']['schema']['number'].update ({

'min': 10000
})

A note about using update

A common mistake is to use update to try to update values in a nested dictionary. This will overwrite the entire
dictionary and probably cause KeyErrors.

Instead of this...
DOMAIN['foo'].update ({
'datasource': { # 'datasource' will only contain 'default_sort!'!
'default_sort': [('"id', -1)1]

(continues on next page)

1.2. Tutorial 5

https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

(continued from previous page)

})
... do this:
DOMAIN['foo']l['datasource']['default_sort'] = [('id', -1)]

1.2.3 Authentication example

This example is based on the Token-Based tutorial from Eve Authentication. First we need to create eve-side authen-
tication:

mmwn

Auth-Token

Securing an Eve-powered API with Token based Authentication and
SQLAlchemy.

This snippet by Andrew Mleczko can be used freely for anything

you like. Consider it public domain.
mmn

from eve import Eve

from eve.auth import TokenAuth
from .models import User

from .views import register_views

class TokenAuth (TokenAuth) :
def check_auth(self, token, allowed_roles, resource, method):

"""First we are verifying if the token is valid. Next

we are checking if user 1is authorized for given roles.

login = User.verify_auth_token (token)

if login and allowed_roles:
user = app.data.driver.session.query(User) .get (login)
return user.isAuthorized(allowed_roles)

else:
return False

if _ name_ == '_ _main__ ':
app = Eve(auth=TokenAuth)
register_views (app)
app.run()

Next step is the User SQLAlchemy model:

mmwn

Auth-Token

Securing an Eve-powered API with Token based Authentication and
SQLAlchemy.

This snippet by Andrew Mleczko can be used freely for anything

(continues on next page)

6 Chapter 1. Documentation

https://python-eve.org/authentication.html#token-based-authentication

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

(continued from previous page)

you like. Consider it public domain.

mwn

import hashlib
import string
import random

from itsdangerous import TimedJSONWebSignatureSerializer \
as Serializer
from itsdangerous import SignatureExpired, BadSignature

from werkzeug.security import generate_password_hash, \
check_password_hash

from sglalchemy.orm import validates
from sglalchemy.ext.declarative import declarative_base

Base = declarative_base()
SECRET_KEY = 'this-is-my-super-secret-key'

class User (Base):
__tablename__ = 'users'

login = Column(String, primary_key=True)
password = Column (String)
roles = relationship("Role", backref="users")

def generate_auth_token(self, expiration=24+x60%60):
"""Generates token for given expiration
and user login."""
s = Serializer (SECRET_KEY, expires_in=expiration)
return s.dumps({'login': self.login })

@staticmethod
def verify_auth_token(token):
"""Jerifies token and eventually returns
user login.
mmn
s = Serializer (SECRET_KEY)
try:
data = s.loads (token)
except SignatureExpired:
return None # valid token, but expired
except BadSignature:
return None # invalid token
return data['login']

def isAuthorized(self, role_names):
"""Checks 1f user 1is related to given role_names.
mmn
allowed_roles = set([r.id for r in self.roles])\
.intersection(set (role_names))
return len(allowed_roles) > 0

def encrypt(self, password):
"""Encrypt password using werkzeug security module.

(continues on next page)

1.2. Tutorial 7

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

(continued from previous page)

mon

return generate_password_hash (password)

@validates('password')

def _set_password(self, key, value):
"""Using SQLAlchemy validation makes sure each
time password is changed it will get encrypted
before flushing to db.

mon

return self.encrypt(value)

def check_password(self, password):
if not self.password:
return False
return check_password_hash(self.password, password)

And finally a flask login view:

mmwn

Auth-Token

Securing an Eve-powered API with Token based Authentication and
SQLAlchemy.

This snippet by Andrew Mleczko can be used freely for anything

you like. Consider it public domain.
mmn

import Jjson
import base64

from flask import request, Jjsonify
from werkzeug.exceptions import Unauthorized
from .models import User

def register_views (app):

@app.route('/login', methods=['POST'])
def login(xxkwargs):
"""Simple login view that expect to have username
and password in the request POST. If the username and
password matches — token is being generated and return.
mmn
data = request.get_json()
login = data.get ('username')
password = data.get ('password'")

if not login or not password:
raise Unauthorized('Wrong username and/or password.')
else:
user = app.data.driver.session.query(User) .get (login)
if user and user.check_password(password) :
token = user.generate_auth_token()
return jsonify({'token': token.decode('ascii')})
raise Unauthorized('Wrong username and/or password.')

8 Chapter 1. Documentation

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

1.2.4 Start Eve

That’s almost everything. Before you can start Eve you need to bind SQLAlchemy from the Eve data driver:

app = Eve(validator=ValidatorSQL, data=SQL)
db = app.data.driver

Base.metadata.bind = db.engine

db.Model = Base

Now you can run Eve:

app.run (debug=True)

and start it:

S python app.py
* Running on http://127.0.0.1:5000/

and check that everything is working like expected, by trying requesting people:

S curl http://127.0.0.1:5000/people/1

"id": 1,
"fullname": "George Washington",
"firstname": "George",
"lastname": "Washington",
"_etag": "3la6cd47afe9febl18b80a5£f0004dd04eec2ae7442",
"_created": "Thu, 21 Aug 2014 11:18:24 GMT",
"_updated": "Thu, 21 Aug 2014 11:18:24 GMT",
"_links": {
"self": {
"href":"/people/1",
"title":"person"
}I
"parent": {
"href": "",
"title": "home"
}I
"collection": {
"href": "/people",
"title": "people"

b,

1.2.5 Using Flask-SQLAIchemy

If you are using Flask-SQLAlchemy, you can use your existing db object in the SQL class driver, rather than the
empty one it creates.

You can do this by subclassing SQL and overriding the driver.

from eve_sglalchemy import SQL as _SQL
from flask_sglalchemy import SQLAlchemy

(continues on next page)

1.2. Tutorial 9

https://flask-sqlalchemy.palletsprojects.com/

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

(continued from previous page)

db = SQLAlchemy (app)

class SQL(_SQL):
driver = db

app = Eve(validator=ValidatorSQL, data=SQL)

1.2.6 SQLAIchemy expressions

With this version of Eve you can use SQLAlchemy expressions such as: like, in, any, etc. For more examples please
check SQLAIchemy internals.

Query strings are supported, allowing for filtering and sorting. Both native Mongo queries and Python conditional
expressions are supported. For more examples please check SQLAlchemy filtering.

Filtering

Generating ‘exact’ matches

Here we are asking for all people where lastname value is Smith:

’ /people?where={"lastname":"Smith"}

which produces where closure:

’people.lastname = "Smith"

Generating multiple ‘exact’ matches

Here we are asking for all people where age value is between 50 and 60:

which produces where closure:

’people.age > 50 AND people.age < 60

Generating ‘like’ matches

Here we are asking for all people where lastname value contains Smi:

’ /people?where={"lastname":"like (\"Smi%\")"}

which produces where closure:

°

’people.lastname LIKE "Smi%"

Generating ‘in’ matches

Here we are asking for all people where firstname value is John or Fred:

firstname" :"in (\" (\'John\"',\'Fred\')\")"}

’ ,/}j;;(;}‘,l"f ?

or you can also use the other syntax query

10 Chapter 1. Documentation

https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/latest/orm/internals.html
https://docs.python-eve.org/en/latest/features.html#filtering

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

”oeop\e?n'9'9:5" irstname": ['John', 'Fred']}

which produces where closure:

’people.firstname IN ("John", "Fred")

Generating ‘similar to’ matches

’fp%@pW&!f“@Tezi"*i”strawe":"siﬂ*TJT to(\" (\'%ohn\"'|\'%a

which produces where closure:

’people.firstname SIMILAR TO ' ("%ohn"|"%acob")'

Generating ‘any’ matches

If you have postgresql ARRAY column you can use any:

vords" :"any (\"critical\")"}

’ /documents?

which produces where closure:

’"critical" = ANY (documents.keywords)

Generating ‘not null’ matches

’/doufmfnfﬁ?whv1wf{"k@ywnrdﬁ":”lfnfll”}

which produces where closure:

’documents.keywords IS NOT NULL

Generating ‘datetime’ matches

Here we are asking for all documents that where _created after Mon, 17 Oct 2019 03:00:00 GMT:

’fﬂQC_M%FLSFWV%I%*icr%F ed> \"Mon, 17 Oct 20

which produces where closure:

’documents._created > 2019-10-17 03:00:00

Sorting

Starting from version 0.2 you can use SQLAlIchemy ORDER BY expressions such as: nullsfirst, nullslast, etc.

Using those expresssion is straightforward, just pass it as 3 argument to sorting:

’/goryl@?%mrff[(";ﬂxinaMO”, -1, "nullslast")]

which produces order by expression:

’people.lastname DESC NULLS LAST

You can also use the following python-Eve syntax:

1.2. Tutorial 11

https://docs.sqlalchemy.org/en/latest/core/sqlelement.html#sqlalchemy.sql.expression.nullsfirst

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

/people?sort=lastname, —created_at

FAQ

cURL

Keep in mind that every browser or cURL generator can implement its own encoder, and not all produce the same
result. So, adding —data-urlencode to the curl query should work.

curl -iG --data-urlencode where='_created> "Thu, 22 Nov 2018 09:00:00 GMT"'_

ocalhost:5000/people

1.2.7 Embedded resources

Eve-SQLAIchemy support the embedded keyword of python-eve (Eve Embedded Resource Serialization).

/people?embedded={"address":1}

For example, the following request will list the people and embedded their addresses.

Starting from version 0.4.0a, only the fields that have the projection (Eve Projections) enabled are included in the
associated resource. This was necessary to avoid endless loops when relationship between resources were referring
each other.

1.3 Simple example

Create a file, called trivial.py, and include the following:

""" Trivial Eve-SQLAlchemy example. '''

from eve import Eve

from sglalchemy import Column, Integer, String

from sglalchemy.ext.declarative import declarative_base
from sglalchemy.orm import column_property

from eve_sglalchemy import SQL
from eve_sglalchemy.config import DomainConfig, ResourceConfig
from eve_sqglalchemy.validation import ValidatorSQL

Base = declarative_base ()

class People (Base):
_ _tablename__ = 'people'
id = Column(Integer, primary_key=True, autoincrement=True)
firstname = Column (String(80))
lastname = Column (String(120))
fullname = column_property(firstname + " " + lastname)

SETTINGS = {
'DEBUG': True,
'SQLALCHEMY_DATABASE_URI': 'sqglite://',

(continues on next page)

12 Chapter 1. Documentation

https://python-eve.org/features.html#embedded-resource-serialization
https://python-eve.org/features.html#projections

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

(continued from previous page)

'SQLALCHEMY_TRACK_MODIFICATIONS': False,
'"DOMAIN'": DomainConfig({

'people': ResourceConfig(People)
}) .render ()

app = Eve(auth=None, settings=SETTINGS, validator=ValidatorSQL,

bind SQLAlchemy

db = app.data.driver
Base.metadata.bind = db.engine
db.Model = Base
db.create_all ()

Insert some example data in the db
if not db.session.query(People) .count () :
db.session.add_all ([
People (firstname=u'George', lastname=u'Washington'),
People(firstname=u'John', lastname=u'Adams'),
People (firstname=u'Thomas', lastname=u'Jefferson')])
db.session.commit ()

using reloader will destroy in-memory sglite db
app.run (debug=True, use_reloader=False)

data=SQL)

Run this command to start the server:

python trivial.py

Open the following in your browser to confirm that the server is serving:

’FL;p://]?T.D.O.T:bOOO/

You will see something like this:

<resource>
<link "child" "people" "people" />

</resource>

Now try the people URL:

A

http://127.0.0.1:5000/people

You will see the three records we preloaded.

<resource "people" "people">
<link "parent" w/m "home" />
<_meta>
<max_results>25</max_results>
<page>1</page>
<total>3</total>
</_meta>

<_updated>Sun, 22 Feb 2015 16:28:00 GMT</_updated>
<firstname>George</firstname>

<fullname>George Washington</fullname>

<id>1</id>

(continues on next page)

1.3. Simple example

13

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

(continued from previous page)

<lastname>Washington</lastname>
</resource>

1.4 Upgrading

1.4.1 Upgrading from 0.6.0 to 0.7.0

Eve-SQLAIchemy is now based on Eve 0.7, which introduces potentially breaking changes:

* The ETag format was changed to comply with RFC 7232-2.3. Be aware the ETag header values are now enclosed
with double-quotes.

* Eve now returns a 428 Precondition Required instead of a generic 403 Forbidden when the If-Match request
header is missing.

For a comprehensive list of changes refer to the official changelog.

1.4.2 Upgrading from 0.5.0 to 0.6.0

There is one potentially breaking change in 0.6.0: Due to a regression 0.5.0 did not return None/null values anymore
(as Eve does and 0.4.1 did). That means your API might return slightly different responses after upgrading to 0.6.0
than it did before. If it’s really a breaking change for you depends on your API specification and your clients.

1.4.3 Upgrading from 0.4.1 to 0.5.0

There are two breaking changes in 0.5.0:

1. Eve-SQLAIlchemy now handles related IDs and embedded objects with just one field in the payload, just as Eve
does. This will most likely affect your consumers, too!

2. We introduced a new way to register your SQLAlchemy models with Eve. So far there is no backward compat-
ible wrapper for the former registerSchema decorator.

Let’s look at the needed changes in more detail. To illustrate both changes, we will look at the following models (the
full code is in the examples directory):

class People (CommonColumns) :
__tablename__ = 'people'
id = Column(Integer, primary_key=True, autoincrement=True)
firstname = Column(String(80))
lastname = Column (String(120))
fullname = column_property(firstname + " " + lastname)

class Invoices (CommonColumns) :
__tablename__ = 'invoices'
id = Column(Integer, primary_key=True, autoincrement=True)
number = Column (Integer)
people_id = Column(Integer, ForeignKey('people.id'"))
people = relationship(People, uselist=False)

14 Chapter 1. Documentation

https://docs.python-eve.org/changelog.html#version-0-7

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

1. Related IDs and embedding

Getting an invoice in 0.4.1 will return the people_id in the payload:

{
" _created": "Sat, 15 Jul 2017 02:24:58 GMT",
"_etag": null,
" id": 1,
" _updated": "Sat, 15 Jul 2017 02:24:58 GMT",
"id": 1,
"number": 42,
"people_id": 1
}

And, if you embed the related People object, you will get:

{
"_created": "Sat, 15 Jul 2017 02:39:25 GMT",
"_etag": null,
"_id": 1,
"_updated": "Sat, 15 Jul 2017 02:39:25 GMT",
"id": 1,
"number": 42,
"people": {
"_created": "Sat, 15 Jul 2017 02:39:25 GMT",
"_etag": null,
"_id": 1,
"_updated": "Sat, 15 Jul 2017 02:39:25 GMT",
"firstname": "George",
"fullname": "George Washington",
"id": 1,
"lastname": "Washington”
}!
"people_id": 1
}

But this was actually not how Eve itself is handling this. In order to follow the APIs generated by Eve more closely,
we decided to adopt the way Eve is doing embedding and use the same field for both the related ID and the embedded
document. Which means starting in 0.5.0, the first response looks like this:

{
" _created": "Sat, 15 Jul 2017 02:52:20 GMT",
"_etag": "26abc30d70£57del186d9£99a7192444fcf538519",
"_updated": "Sat, 15 Jul 2017 02:52:20 GMT",
"id": 1,
"number": 42,
"people": 1

}

And the second one (with embedding):

{
"_created": "Sat, 15 Jul 2017 02:54:44 GMT",
"_etag": "8all2lcacb77a21f9ff3b5a85cfbala501la538ea",
"_updated": "Sat, 15 Jul 2017 02:54:44 GMT",
"id": 1,
"number": 42,
"people": {

(continues on next page)

1.4. Upgrading 15

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

(continued from previous page)

" _created": "Sat, 15 Jul 2017 02:54:44 GMT",
"_updated": "Sat, 15 Jul 2017 02:54:44 GMT",
"firstname": "George",

"fullname": "George Washington",

"id": 1,

"lastname": "Washington"

2. Registering of SQLAIchemy models

In 0.4.1, you were most likely doing something along the following lines in your settings.py:

ID_FIELD = 'id'
config.ID_FIELD = ID_FIELD

registerSchema ('people') (People)
registerSchema('invoices') (Invoices)

DOMAIN = ({
'people': People._eve_schemal'people'],
'invoices': Invoices._eve_schema['invoices']
}

There are good news: manually (and globally) setting ID_FIELD, including the workaround of setting config.
ID_FIELD, is not required anymore. The same applies to ITEM_LOOKUP_FIELD and ITEM_URL. While you can
still override them, they are now preconfigured at the resource level depending on your models’ primary keys.

The required configuration for the models above simplifies to:

from eve_sglalchemy.config import DomainConfig, ResourceConfig

DOMAIN = DomainConfig({
'people': ResourceConfig(People),
'invoices': ResourceConfig(Invoices)
}) .render ()

Note: If you’ve modified DATE_CREATED, LAST_UPDATED or ETAG, you have to pass their value to
DomainConfig.render (). They are needed during rendering the final DOMAIN configuration.

DomainConfig(domain_dict) .render (date_created=DATE_CREATED,
last_updated=LAST_UPDATED,
etag=ETAG)

1.5 How to Contribute

Contributions are welcome! Not familiar with the codebase yet? No problem! There are many ways to contribute to
open source projects: reporting bugs, helping with the documentation, spreading the word and of course, adding new
features and patches.

16 Chapter 1. Documentation

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

1.5.1 Getting Started

1.
2.
3.

Make sure you have a GitHub account.
Open a new issue, assuming one does not already exist.

Clearly describe the issue including steps to reproduce when it is a bug.

1.5.2 Making Changes

Fork the repository on GitHub.

Create a topic branch from where you want to base your work.

This is usually the master branch.

Please avoid working directly on the master branch.

Make commits of logical units (if needed rebase your feature branch before submitting it).
Check for unnecessary whitespace with git diff --check before committing.
Make sure your commit messages are in the proper format.

If your commit fixes an open issue, reference it in the commit message (#15).

Make sure your code conforms to PEP8 (we’re using flake8 for PEPS and extra checks).
Make sure you have added the necessary tests for your changes.

Run all the tests to assure nothing else was accidentally broken.

Run again the entire suite via tox to check your changes against multiple python versions. pip install
tox; tox

Don’t forget to add yourself to AUTHORS.

These guidelines also apply when helping with documentation (actually, for typos and minor additions you might
choose to fork and edit).

1.5.3 Submitting Changes

Push your changes to a topic branch in your fork of the repository.
Submit a Pull Request.

‘Wait for maintainer feedback.

1.5.4 Keep fork in sync

The fork can be kept in sync by following the instructions here.

1.5.5 Join us on IRC

If you’re interested in contributing to the Eve-SQLAlchemy project or have any questions about it, come join us in
Eve’s #python-eve channel on irc.freenode.net.

1.5. How to Contribute 17

https://github.com/
https://github.com/pyeve/eve-sqlalchemy/issues/new
https://help.github.com/articles/fork-a-repo
https://github.com/pyeve/eve-sqlalchemy
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://www.python.org/dev/peps/pep-0008/
https://flake8.readthedocs.io/
https://tox.readthedocs.org/
https://github.com/pyeve/eve-sqlalchemy/blob/master/AUTHORS
https://github.com/blog/844-forking-with-the-edit-button
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/syncing-a-fork

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

1.5.6 First time contributor?

It’s alright. We’ve all been there. See next chapter.

1.5.7 Don’t know where to start?

There are usually several TODO comments scattered around the codebase, maybe check them out and see if you
have ideas, or can help with them. Also, check the open issues in case there’s something that sparks your interest.
There’s also a special contributor—friendly label flagging some interesting feature requests and issues that
will easily get you started - even without knowing the codebase yet. If you’re fluent in English (or notice any typo
and/or mistake), feel free to improve the documentation. In any case, other than GitHub help pages, you might want
to check this excellent Effective Guide to Pull Requests

18 Chapter 1. Documentation

https://github.com/pyeve/eve-sqlalchemy/issues
https://help.github.com/
https://codeinthehole.com/tips/pull-requests-and-other-good-practices-for-teams-using-github/

CHAPTER 2

Changelog

2.1 0.7.2 (unreleased)

* Nothing changed yet.

2.2 0.7.1 (2019-08-10)

* Updated Tutorial to use werkzeug.security module (#196) [Mandar Vaze]

* Require Flask-SQLAlchemy >= 2.4 and SQLAlchemy >= 1.3 due to security issues [Dominik Kellner]
* Support filtering on embedded document fields / across relations (#186) [Dominik Kellner]

* Fix sorting across relations [Dominik Kellner]

e Add Python 3.7 and PyPy3 to supported (and tested) versions [Dominik Kellner]

» Pin SQLAIchemy version due to warnings in Flask-SQLAlchemy [Dominik Kellner]

* Improve documentation (#187, #189) [Marc Vila]

2.3 0.7.0 (2018-10-08)

* Eve 0.7 support (#178) [Nicola Iarocci]

2.4 0.6.0 (2018-08-15)

* Fix querying of list relations using where [Dominik Kellner]

» Update Tutorial (#177) [Nicola Iarocci]

19

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

* Return None-values again (#155) [Cuong Manh Le]
* Allow to supply own Flask-SQLAlchemy driver (#86) [fubu]
* Support columns with server_default (#160) [Asif Mahmud Shimon]

2.5 0.5.0 (2017-10-22)

¢ Add DomainConfig and ResourceConfig to ease configuration (#152) [Dominik Kellner]
* Fixes in documentation (#151) [Alessandro De Angelis]

* Fix deprecated import warning (#142) [Cuong Manh Le]

* Configure zest.releaser for release management (#137) [Dominik Kellner, @ystein S. Haaland]
* Leverage further automated syntax and formatting checks (#138) [Dominik Kellner]
 Clean up specification of dependencies [Dominik Kellner]

* Added ‘Contributing’ section to docs (#129) [Mario Kralj]

* Fix trivial app output in documentation (#131) [Michal Vlasédk]

* Added dialect-specific PostgreSQL JSON type (#133) [Mario Kralj]

* Fix url field in documentation about additional lookup (#110) [Killian Kemps]

* Compatibility with Eve 0.6.4 and refactoring of tests (#92) [Dominik Kellner]

2.6 0.4.1 (2015-12-16)

* improve query with null values [amleczko]

2.7 0.4.0a3 (2015-10-20)

* hybrid_properties are now readonly in Eve schema [amleczko]

2.8 0.4.0a2 (2015-09-17)

* PUT drops/recreates item in the same transaction [goneri]

2.9 0.4.0a1 (2015-06-18)

* support the Python-Eve generic sorting syntax [Goneri Le Bouder]
¢ add support for and_ and or_ conjunctions in sqla expressions [toxsick]

* embedded table: use DOMAIN to look up the resource fields [Goneri Le Bouder]

20 Chapter 2. Changelog

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

2.10 0.3.4 (2015-05-18)

* fix setup.py metadata

¢ fix how embedded documents are resolved [amleczko]

2.11 0.3.3 (2015-05-13)

* added support of SA association proxy [Kevin Roy]

* make sure relationships are generated properly [amleczko]

2.12 0.3.2 (2015-05-01)

* add fallback on attr.op if the operator doesn’t exists in the ColumnProperty [Kevin Roy]
¢ add support for PostgreSQL JSON type [Goneri Le Bouder]

2.13 0.3.1 (2015-04-29)

» more flexible handling sqlalchemy operators [amleczko]

2.14 0.3 (2015-04-17)

e return everything as dicts instead of SQLAResult, remove SQLAResult [LeonidazOr]
* fix update function, this closes #22 [David Durieux]

* fixed replaced method, we are compatible with Eve>=0.5.1 [Kevin Roy]

* fixed jsonify function [LeonidazOr]

* update documentation [Alex Kerney]

¢ use id_field column from the config [Goneri Le Bouder]

¢ add flake8 in tox [Goneri Le Bouder]

2.15 0.2.1 (2015-02-25)

* always wrap embedded documents [amleczko]

2.16 0.2 (2015-01-27)

* various bugfixing [Arie Brosztein, toxsick]

* refactor sorting parser, add sql order by expresssions; please check https://eve-sqlalchemy.readthedocs.org/
#sqlalchemy-sorting for more details [amleczko]

2.10. 0.3.4 (2015-05-18) 21

https://eve-sqlalchemy.readthedocs.org/#sqlalchemy-sorting
https://eve-sqlalchemy.readthedocs.org/#sqlalchemy-sorting

Eve-SQLAIchemy Documentation, Release 0.7.2.dev0

2.17 0.1 (2015-01-13)

* First public preview release. [amleczko]

22 Chapter 2. Changelog

	Documentation
	Installation
	Tutorial
	Simple example
	Upgrading
	How to Contribute

	Changelog
	0.7.2 (unreleased)
	0.7.1 (2019-08-10)
	0.7.0 (2018-10-08)
	0.6.0 (2018-08-15)
	0.5.0 (2017-10-22)
	0.4.1 (2015-12-16)
	0.4.0a3 (2015-10-20)
	0.4.0a2 (2015-09-17)
	0.4.0a1 (2015-06-18)
	0.3.4 (2015-05-18)
	0.3.3 (2015-05-13)
	0.3.2 (2015-05-01)
	0.3.1 (2015-04-29)
	0.3 (2015-04-17)
	0.2.1 (2015-02-25)
	0.2 (2015-01-27)
	0.1 (2015-01-13)

